Using Mobile Agents for Secure Biometric Authentication

o Marco Tranquillin, <u>Carlo Ferrari</u>, Michele Moro

DEI, University of Padova

• • Agenda

- Requirements and motivations
- Authentication fundamental issues
- System architecture
 - Components' roles
- The proposed protocol
- Analysis and final remarks

• • Goal ...

 Design and prototype an agent-based infrastructure for strong authentication of users.

Mobile devices have an active role

A demo ...

• • Requirements

- Authentication is the basis of a user machine interface in pervasive context.
- Strong authentication (...it involves more than one factor...) becomes important in critical contexts
- Robustness and Security level of portable hw/sw are now worth to be considered

• • Biometrics

- Measuring physical features
 - fingerprints,
 - iris,
 - face,
 - voice,
 - hand geometry
- Measuring dynamic behaviour
 - typing,
 - walking

• • Biometrics

- Acquiring raw data
- Feature extraction
- Matching
- Evaluation (FAR, FRR...)

Biometric Recognition

- Using different parameters
- Composition
- Multivalue logic
- Adaptation

Biometric System

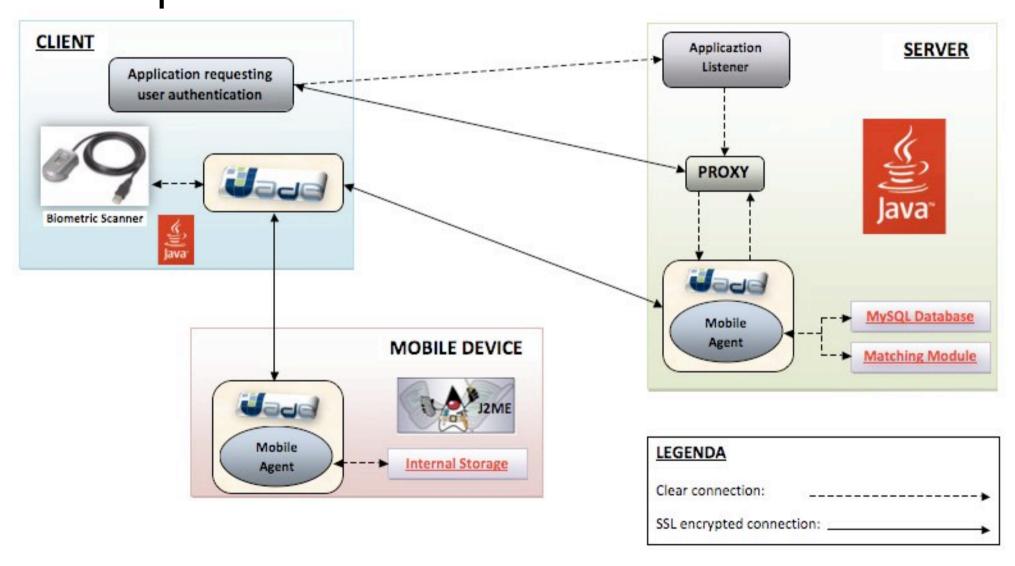
- Access control
- Application in pervasive context for
 - User tracking
- Heterogeneous system
 - computational power
 - mobility

Motivations

- Mobility of credentials is increasing in importance due to anywhere/anytime operative needs
- Agent mobility allows thin portable applications provided critical software is remotely loaded on-the-fly
- When some critical information are stored uniquely on not easily tamperable portable devices, safer protocols can be applicable

Interesting points

- ... the inclusion of a mobile phone in the authentication infrastructure
- an agent-based approach for implementing a suitable protocol
- In which depth agent mobility can be an added value in the proposed infrastructure?


Authentication essential issues

- Strong authentication is based on:
 - Something the user knows (PIN or similia)
 - Something the user holds (a mobile device with its SIM/smart card)
 - Something tied to the user (a biometric parameter, a fingerprint in the present case)

Reasoning

- PIN acquired by mobile...
- Device authentication ... SIM
- Biometric authentication is not on mobile
 - Match-on-card
- Deploy agents on mobile devices

System architecture

- Server
 - Repository of fingerprint templates of all the registered users

The Server Agent (SA)

Client

- It supports the reading of the biometric parameter
- It supports the direct communication with the mobile device

- Mobile
 - PIN acquisition interface
 - Repository of the user fingerprint template...
 - The UserPhone Agent

Client

The Mobile Agent.....

...on the Mobile device...

- Generated during the Enrollment phase
 - RSA user key couple (K⁺_U, K⁻_U)
 - Hash of the user data (H_U)
 - AES user key (K_U)
 - Encrypted fingerprint
- Copied during the Enrollment phase
 - AES server key (K_S)
 - RSA server public key (K⁺_S)

• • phase 1: initialization

- Get the user PIN on the mobile device
- Initialize the agency instances
- Establish the SSL tunnel between client and server
- The client sends a session ID to the server

• • phase 2: mobile authentication

- S: M1 = $[R_{S1}, --]$
- S: $K_S(M1), K_S^-(H(M1)) \rightarrow M$
- M: Decrypt M1
- M: CheckSig(K^+_S , $K_S(M1)$, $K^-_S(H(M1))$)
- M: M2 = $[R_{S1}+1, K_{IJ}^{+}]$
- M: $K_S(M2), K_{-1}(H(M2)) \rightarrow S$
- S: Decrypt M2
- S: CheckSig(K^+_U , $K_S(M2)$, $K^-_U(H(M2))$
- S: CheckResponse(R_{S1}, M2)
- S: Save $K_S(K_U^+)$

phase 3: user personal data authentication

- \circ S: M3 = [R_{S1}+2, --]
- S: $K_S(M3)$, $K_S^-(H(M3)) \rightarrow M$
- M: Decrypt M3
- M: CheckSig(K^+_S , $K_S(M3)$, $K^-_S(H(M3))$)
- M: M4 = $[R_{S1}+3, H_{U}, PIN]$
- M: $K_S(M4)$, $K_U^-(H(M4)) \rightarrow S$
- S: Decrypt M4
- S: CheckSig(K^+_U , $K_S(M4)$, $K^-_U(H(M4))$
- S: CheckResponse(R_{S1}+2, M4)
- S: CheckUserData(H_U, PIN)
- S: Get K_U from DB

phase 4: user biometric data authentication

- S: M5 = $[R_{S1}+4, --]$
- S: $K_U(M5)$, $K_S^-(H(M5)) \rightarrow M$
- M: Decrypt M5
- M: CheckSig(K^+_S , $K_U(M5)$, $K^-_S(H(M5))$)
- M: M6 = $[R_{S1}+5, K_{U}(FpTemp)]$
- M: $K_U(M6)$, $K_U^-(H(M6)) \to S$
- S: Decrypt M6
- S: CheckSig(K^+_U , $K_U(M6)$, $K^-_U(H(M6))$
- S: CheckResponse(R_{S1}+4, M6)
- S: Save K_U(FpTemp)

phase 4: user biometric data authentication

- S: M7 = $[R_{S2}, K_{S}^{+}] \rightarrow C$
- C: M8 = $[R_{S2}, K_{S}^{+}(FpLive)] \rightarrow S$
- S: Decrypt K_U(FpTemp) and K⁺_S(FpLive)
- S: Rep = Match(FpLive, FpTemp)
- S: M9 = $[R_{S1}+6, Rep]$
- S: $K_U(M9)$, $K_S^-(H(M9)) \rightarrow M$
- M: Decrypt M9
- M : CheckSig(K⁺_S, K_U(M9), K⁻_S(H(M9)))
- Show/Use Rep

- 3-steps approach
 - recognizing the mobile device as member of a set of authorized devices,
 - recognizing a user through her personal credentials
 - the biometric match
- The client is simply responsible for the reading of the raw biometric parameter
- The use of a mobile agent "isolate" the client and help to cope with the limitation of the mobile device.

- Basic security is provided by the SSL tunnel.
- Freshness and liveness properties are guaranteed by the challenge-and –response approach, like in the Needham-Schroeder protocol
- An appropriate combination of secret keys related both to the machines and to the single users provides a good balance between performances and the level of security.

- Whenever a step fails the whole authentication process fails.
- If a step is fraudulently passed, no effect of further weakness is propagated at subsequent levels that use new and different critical data.
- The last step, that uses biometric data, is the hardest to be misleaded.

 In perspective the MAS architecture shows a sufficient degree of scalability to adapt our model to significantly more complex situations like those requiring several client locations and a great number of potential users.

- It is worth to point out that the Jade security extension (Jade-S) unfortunately presents some hard limitations that make it unusable when mobile devices are involved.
- The future availability of more powerful smartphones will also bring the conditions for introducing the agent mobility at the phone level.